
Capturing Performance Knowledge
for Automated Analysis

Kevin A. Huck∗, Oscar Hernandez†, Van Bui†, Sunita Chandrasekaran‡,
Barbara Chapman†, Allen D. Malony∗, Lois Curfman McInnes§ and Boyana Norris§

∗Computer and Information Science Department, University of Oregon
Eugene, OR 97403-1202 Email: khuck,malony@cs.uoregon.edu
†Department of Computer Science, University of Houston

Houston, TX 77204-3010 Email: oscar, chapman@cs.uh.edu, van.bui@mail.uh.edu
‡Centre for High Performance Embedded Systems, Nanyang Technological University

Singapore, 637553 Email: suni0003@ntu.edu.sg
§Mathematics and Computer Science Division, Argonne National Laboratory

Argonne, IL 60439 Email: curfman,norris@mcs.anl.gov

Abstract—Automating the process of parallel performance
experimentation, analysis, and problem diagnosis can enhance
environments for performance-directed application development,
compilation, and execution. This is especially true when paramet-
ric studies, modeling, and optimization strategies require large
amounts of data to be collected and processed for knowledge
synthesis and reuse. This paper describes the integration of
the PerfExplorer performance data mining framework with
the OpenUH compiler infrastructure. OpenUH provides auto-
instrumentation of source code for performance experimentation
and PerfExplorer provides automated and reusable analysis
of the performance data through a scripting interface. More
importantly, PerfExplorer inference rules have been developed
to recognize and diagnose performance characteristics important
for optimization strategies and modeling. Three case studies
are presented which show our success with automation in
OpenMP and MPI code tuning, parametric characterization,
and power modeling. The paper discusses how the integration
supports performance knowledge engineering across applications
and feedback-based compiler optimization in general.

I. INTRODUCTION

Accurate parallel performance analysis is a complicated
and intimidating task for even an experienced performance
analyst. On the one hand, the management of multi-experiment
performance data from parametric studies and the applica-
tion of multi-step processes involving various statistical, data
mining, and meta-analysis operations can introduce errors if
done manually. On the other, lack of support for analysis
automation translates ultimately to the loss of knowledge,
earned through experience, about successful performance en-
gineering practices – what analysis methods are useful for
what performance problems, how performance models are
obtained and validated, and how to interpret performance
results relative to opportunities for optimization. Advancement
in parallel performance problem solving and its integration
in optimization frameworks will depend on creating analysis
workflows and capturing expert rules for automated use.

Effective performance analysis automation requires perfor-
mance tools which support data management, process script-
ing, and knowledge engineering, as well as their integration

with parallel program development environments. While the
heavy analysis lifting will occur in the performance system,
it is the ability to encode general expertise and case-specific
methods that allows development tools to direct analysis
strategies to problem solving needs. There are two key re-
search challenges. The first is in designing flexible analysis
components and usable interfaces for their integration. The
second is in engaging the parallel programming and tuning
environments to use the knowledge-based analysis automation
capabilities.

This paper describes the integration of the PerfExplorer [9]
performance data mining system with the OpenUH [13]
compiler infrastructure. The union provides OpenUH auto-
instrumentation of source code for performance experimenta-
tion and automated analysis using PerfExplorer scripts of the
performance results. More important, PerfExplorer inference
rules are developed to recognize and diagnose performance
characteristics important for OpenUH modeling and optimiza-
tion strategies.

To demonstrate the benefits of automating analysis meth-
ods, two case studies are presented on OpenMP and MPI
code tuning, one targeting load balance problems (a multiple
sequence alignment application) and another targeting data
locality problems (a fluid dynamics application). In both,
the goal is to capture the optimization process and insight
gained by the manual tuning of these applications in the
form of PerfExplorer analysis scripts and inference rules. The
approach is validated by comparing the optimized code to
the unoptimized. A third case study is reported for the fluid
dynamics application, but in the context of power modeling.
Here PerfExplorer scripts and inference rules demonstrate how
optimizing various functions affects the power consumption in
the hardware.

This paper is organized as follows. Section I gives an
introduction to our automation framework. Section II provides
a brief introduction to the tools and gives a description on their
integration in this project. Section III illustrates the example
problems and corresponding graphs and results. Related work

create a rulebase for processing
ruleHarness = RuleHarness.useGlobalRules(

"openuh/OpenUHRules.drl")
load a trial
trial = TrialMeanResult(Utilities.getTrial(

"Fluid Dynamic", "rib 45", "1_8"))
calculate the derived metric
stalls = "BACK_END_BUBBLE_ALL"
cycles = "CPU_CYCLES"
operator = DeriveMetricOperation(trial, stalls,

cycles, DeriveMetricOperation.DIVIDE)
derived = operator.processData().get(0)
compare values to average for application
for event in derived.getEvents():

MeanEventFact.compareEventToMain(derived,
mainEvent, derived, event)

process the rules
ruleHarness.processRules()

Fig. 1. Sample Jython script.

is discussed in Section IV. The paper concludes with a discus-
sion on how the integration supports performance knowledge
engineering across applications and feedback-based compiler
optimization in general.

II. DESIGN

In this section, we briefly overview the design of Perf-
Explorer 2.0 and the OpenUH compiler infrastructure, and
describe our approach to their integration.

A. PerfExplorer 2.0

Instrumentation and measurement tools such as TAU [18]
can collect very detailed performance data from parallel
applications. The potential sizes of datasets and the need
to assimilate results from multiple experiments makes it a
challenge to both process the information and discover and un-
derstand new insights about performance. In order to perform
analysis on collections of TAU performance experiment data,
we developed PerfExplorer, a framework for parallel perfor-
mance data mining and knowledge discovery. The framework
architecture enables the development and integration of data
mining operations that can be applied to parallel performance
profiles. PerfExplorer is built on PerfDMF, a data management
framework which provides a library to access the parallel
profiles and save analysis results in a relational database.
PerfDMF includes support for nearly a dozen performance
profile formats, including TAU. PerfExplorer is integrated with
existing data mining toolkits, and allows for extensions using
those toolkits.

In the latest release of PerfExplorer, we have added two new
features which will aid in automated analysis and are relevant
to this paper. First, we have added a scripting interface for
process control. The scripting interface is in Jython, which is
a full Python interpreter written in Java. Because PerfExplorer
is a Java application, all of the application objects are available
to the script interface, but we limit the access to a smaller
subset API. With the interface, it is straightforward to derive
new metrics, perform analysis, and automate the processing
of performance data. An example script is shown in Figure 1.

rule "Stalls per Cycle"
when f : MeanEventFact (
m : metric == "(BACK_END_BUBBLE_ALL /

CPU_CYCLES)",
h : higherLower == MeanEventFact.HIGHER,
s : severity > 0.10, e : eventName,
a : mainValue, v : eventValue,
factType == "Compared to Main")

then
System.out.println("Event " + e + " has

a higher than average stall / cycle rate");
System.out.println("\tAverage stall /

cycle: " + a);
System.out.println("\tEvent stall /

cycle: " + v);
System.out.println("\tPercentage of total

runtime: " + s);
end

Fig. 2. Sample JBoss Rules rule.

This simple example loads some inference rules, loads a
trial from PerfDMF, derives an inefficiency metric, and then
compares each event’s exclusive value with the inclusive value
of main before processing the rules, where an event is defined
as any instrumented code region.

The second relevant new feature in PerfExplorer is the
integration of the JBoss Rules inference engine for rule
processing. The rules which interpret the performance results
are easily constructed and modified, and an expert system
for explaining parallel performance data can be constructed.
PerfDMF and PerfExplorer have been extended for better
support of performance context, or metadata, and rules can be
constructed which include the metadata to justify conclusions
about the performance data. An example rule is shown in
Figure 2. This example rule will fire for any and all events
which have a higher than average stall per cycle rate, and also
account for at least 10% of the total run time.

B. OpenUH Compiler

The OpenUH [13] compiler is a branch of the open
source Open64 compiler suite for C, C++, and Fortran 95,
supporting the IA-64, IA-32e, and Opteron Linux ABI and
standards. OpenUH provides complete support for OpenMP
2.5 compilation and its runtime library. The major functional
parts of the compiler are the front ends, the inter-language
interprocedural analyzer (IPA) and the middle-end/back end,
which is further subdivided into the loop nest optimizer
(LNO), auto-parallelizer (with an OpenMP optimization mod-
ule), global optimizer (WOPT), and code generator (CG).
Each of these modules supports frequency-based feedback
directed optimizations. OpenUH has five levels of a tree-based
intermediate representation (IR) called WHIRL to facilitate the
implementation of different analysis and optimization phases.
Most compiler optimizations are implemented on a specific
level of WHIRL. OpenUH has been enhanced to support the
requirements of TAU, Kojak and PerfSuite by supporting an
instrumentation API for source code and OpenMP runtime
library support.

One of the keys to the integration of these components is the

ability of the compiler to instrument source code. The revised
version of OpenUH provides a complete compile-time instru-
mentation module that works at different compilation phases
and covers a variety of program constructs (e.g. procedures,
loops, branches, callsites). We have designed a language-
independent compiler instrumentation API that can be used to
instrument complete applications written in C, C++, Fortran,
OpenMP and MPI [8]. MPI operations are instrumented via
PMPI rather than by the compiler. OpenMP constructs are
handled via runtime library instrumentation, where the fork
and joint events, implicit and explicit barriers are captured [2].
All these types of instrumentation are related to each other.
For example, procedure and control flow instrumentation are
essential for relating the MPI and OpenMP-related output to
the execution path of the application, or for understanding how
constructs behave inside these regions.

The instrumentation module can be controlled via compiler
flags, specifying the types of regions we want to instrument.
It is invoked at different phases during compilation to provide
feedback to IPA, LNO, WOPT, the OpenMP translation, or
CG. The compiler instrumentation retains a mapping identifier
that can be used to relate performance data back to the
intermediate representation at a given optimization phase. The
compiler currently supports feedback for branch, loop, and
control flow optimizations, and callsite counts to improve
inlining. All these optimizations are frequency-based and our
work is being done provide feedback to the internal cost-
models of the compiler.

Some compiler optimization modules compute a cost model
to guide the optimization strategies. For example, the loopnest
optimizer has an explicit processor model, a cache model and
a parallel overhead model. OpenUH static cost modeling [29]
evaluates different combinations of loop optimizations, using
constraints to avoid an exhaustive search. The processor model
includes instruction scheduling and register pressure, and is
based on the processor’s computational resources, latencies
and registers. The cache model helps to predict cache misses
and the cycles required to start up inner loops. The parallel
model was designed to support automatic parallelization by
evaluating the cost involved in parallelizing a loop, and to
decide which loop level to parallelize. The parallel model
accounts for threaded fork-join and reduction overhead.

The cost model can be customized for specific optimization
goals. Currently, it can focus on reducing cache misses,
register pressure, instruction scheduling, pipeline stalls and
parallel overheads. Our intent is to find derived performance
metrics that can tune these models for specific optimization
goals based on input from PerfExplorer recommendations.

C. Tool Integration

The ultimate goal with this tool integration is to improve
the performance of applications compiled with OpenUH, using
feedback suggestions from PerfExplorer to improve cost model
optimizations and OpenMP parameterization. Figure 3 shows
what this integration would look like in a completed form, and
how the tools interoperate currently. Source code is compiled

with OpenUH, which also does instrumentation and code
generation. The instrumented application is executed, and TAU
profiles are stored in a PerfDMF repository. This data is an-
alyzed with PerfExplorer, and the diagnoses and explanations
are passed on to the user as performance suggestions. In
the future, we hope to integrate the tools with a feedback
optimization loop to improve the compiler cost models, but
currently we require manual changes to the source code.

Previously, feedback optimizations have been used to
improve runtime behavior for control, that is, improving
branches, frequently executed control flow paths, and loop
optimizations based on counting the number of times a path
or a loop gets executed. By using feedback suggestions from
PerfExplorer, we believe we can improve the performance
of the application by providing runtime analysis data (with
hardware counter information) to the cost model estimation,
which is currently constrained to using only static analysis
data. By improving the cost models we can guide the com-
pilation process to prefer a transformation that reduces power
consumption, or which reduces cache misses, or improves
computational density.

III. RESULTS

Our case studies were conducted on the Altix 300 and Altix
3600. We collected the performance characteristics in the Altix
300 and perform production runs in the Altix 3600 with higher
number of processors. The Altix 300 is a distributed-shared
memory system consisting of 8 nodes with two Itanium 2
processors each. The Altix 3600 consists of 256 nodes, with
a total of 512 processors. A single address space is seen by
all the processors/nodes and its global memory is based on
a cache-coherent Non-Uniform Memory Access (ccNUMA)
system implemented via the NUMAlink. Each node has a local
memory; two nodes are connected via a memory hub to form
a computational brick (C-brick). The C-bricks are connected
via memory routers in a hierarchical topology. The Itanium 2
(Madison) processor in has 16 KB of Level 1 instruction cache
and 16 KB of Level 1 data cache. The L2 cache is unified (both
instruction and data) and is 256 KB. The Level 3 cache is also
unified. The different characteristics of the main components
of the Itanium 2 processor can be measured via the hardware
counters.

A. Multiple Sequence Alignment

Molecular biologists frequently compute multiple sequence
alignment (MSA) to compare protein sequences with unknown
functionality to a set of known sequences to detect functional
similarities[31]. The steady growth in the size of sequence
databases means that the comparisons require increasingly sig-
nificant scan times. Because the time and space complexities
for MSA are in the order of the product of the lengths of
the sequences, many heuristic alignment methods have been
developed. Among them, progressive alignment is a widely
used heuristic. The popular MSA program ClustalW[21] is
one such example. It consists of three stages: distance ma-
trix, guided tree, and progressive alignment along the tree.

Source Code Instrumented
Application

PerfDMF

TAU ProfilesOpenUH

PerfExplorer

Inference
Rules

Analysis
Scripts

Analysis
Results

Future

User
Recommendations

Current

Fig. 3. PerfExplorer integrated with OpenUH. Dashed lines indicate future capabilities.

The main purpose of MSA is to infer homology between
sequences. Profiling of the ClustalW program on a single
processor showed that almost 90% of the time is spent in
the first stage. (i.e. computing the distance matrix of the
three stages). This ClustalW first stage is based on the Smith-
Waterman algorithm, a dynamic programming approach that
computes the optimal local alignment of two sequences. Full
details of the MSA stages and the SW algorithm can be
obtained from [21] and elsewhere. We parallelized the SW
algorithm using OpenMP for the main computational loops
but did not get a solution that scaled for large numbers of
threads.

To improve OpenMP performance, we used schedule
clauses to specify how the iterations of the main loop should
be allocated to the threads. Among the different scheduling
mechanisms, we applied static and dynamic scheduling on
different protein sequences and varied dynamic chunk sizes to
drill down to a suitable scheduling strategy that scaled. In the
process, we found that static even (the default), and dynamic
even scheduling experienced load imbalances. Uneven tasks
were distributed to the processing units, as shown in Figure
4(a). As for the chunk sizes scheduled for each thread, we
found that the imbalance was due to uneven distribution of
work. Because the parallel loops in the algorithm were at a
very coarse grained level containing four nested loops, small
chunk sizes gave the best speedup. Larger chunk sizes tend
to change the scheduling behavior to be more like the static
even behavior. When applying the right dynamic scheduling,
the load imbalances were reduced and it produced scaling
efficiency of up to 80% with 128 threads on a 1000 sequence
set when using a chunk size of one. Figure 4(b) shows the
scaling behavior of different schedules on up to 16 threads.

In order to capture this analysis with PerfExplorer, we

developed a script which performed a load balancing test of
the code. For each instrumented region, or event, we computed
the mean and standard deviation of time across all threads,
and then computed the ratio of the standard deviation to the
mean. Because the outer loop was waiting for the inner loop
to complete, we also wanted to detect that for a parent-child
relationship in the callgraph, an increase in the time spent in
the inner loop meant a shorter time spent in the outer loop.
That was done by correlating the times spent in the loops and
getting a high negative correlation. We also wanted to compute
the amount of useful work done in the outer loop, which would
indicate if threads were working or were waiting at the barrier
for other threads to finish.

The load imbalance detection rule is activated when the
following facts are true. First, two loops have a high standard
deviation to mean ratio (> 0.25), which indicates that they are
unbalanced across the threads. Second, the loops occupy more
than 5% of the total runtime, which indicates the severity that
this load imbalance has on the runtime. Third, the events are
nested - that is, one of the events calls the other in the call
graph. Fourth, on a per-thread basis, the times in the events
are highly negatively correlated - that is, a thread that finishes
the inner loop early will spend more time in the outer loop
waiting at the barrier, whereas a thread which spends more
time in the inner loop will spend less time in the barrier. When
all these facts are asserted true, the rule will fire and the user
will be indicated of the problem, and the suggested scheduling
change.

B. GenIDLEST

Generalized Incompressible Direct and Large-Eddy Simula-
tions of Turbulence (GenIDLEST)[20] solves the incompress-
ible Navier-Stokes and energy equations and is a comprehen-

(a) Load imbalance in inner and outer loops, 16 threads. (b) Relative Efficiency of MSAP Application

Fig. 4. MSAP scaling behavior for 400 sequences problem set

sive and powerful simulation code with two-phase dispersed
flow modeling capability, turbulence modeling capabilities,
and boundary conditions to make it applicable to a wide range
of real world problems. It uses an overlapping multi-block
body-fitted structured mesh topology in each block combining
it with an unstructured inter-block topology. The multiblock
approach provides a basic framework for parallelization, which
can be exploited by SPMD parallelism using MPI, OpenMP
or a hybrid. In a representative problem with n computational
blocks, it can use up to n MPI processors or equivalently
n OpenMP threads or various combinations of MPI-OpenMP
without loss of generality. Further, within each block, “virtual
cache blocks” are used. The “virtual” blocks are not explicitly
reflected in the data structure but are used in two-level Ad-
ditive or Multiplicative Schwarz preconditioners for solving
linear systems. In addition to the favorable preconditioning
properties, the small “cache” blocks also allow efficient use
of cache on hierarchical memory systems in modern chip
architectures[27]. The virtual cache blocks also provide an
additional level of parallelism.

Two test cases which investigate the internal cooling of
turbine blades are presented here: a fully-developed flow in a
45-degree ribbed internal cooling duct using Detached Eddy-
Simulations (45rib); and another case with the same geometry
but with a 90 degree rib and using the method of Large-
Eddy Simulations (90rib). The former has a grid consisting
of 128x80x64 decomposed into 8 blocks of 128x80x8 and the
latter has a grid of 128x128x128 decomposed into 32 blocks
of 128x128x4. The two cases are executed using both MPI
and OpenMP on up to 8 and up to 32 processors of the SGI
Altix, for the 45 and 90 degree problems, respectively.

In the code framework each computational block has ghost
cells at inter-block boundaries and also at periodic boundaries
which are used in the flow direction. Ghost cell updates on
each processors employ asynchronous MPI communications
and involve two additional temporary buffers that enable some

overlapping of the isend and ireceive operations for greater
efficiency

In the 45rib and 90rib executing on 8 and 16 MPI pro-
cessors, respectively, 2 isend-ireceives are invoked on each
processor with 2 on-processor copies, noting that these are
done in parallel across MPI processes. However, when using
standalone OpenMP (with 8 threads for 45rib and 16 or 32
threads for 90rib), all boundary updates are copies in shared
memory initiated by the master thread. Hence there are 30
on-processor copies for 45rib and 126 on-processor copies for
90rib, all initiated by the master thread.

Our methodology is part of an application tuning cycle
that consists of iterative application runs that enable scalable
instrumentation and feedback optimizations, as follows:

Profiling with Selective Instrumentation: Our selective in-
strumentation method [7] is designed to create a scoring
mechanism for regions of interest based on their importance
in the code and call graph. We want to avoid instrumenting
regions of code that have small weights (e.g. few basic blocks,
statements) and are invoked many times. In this run we
focus on procedure level instrumentation. The goal of the
initial run is to determine where the processor bottlenecks
are located. Depending on whether the application is integer
or floating-point based, we select: Wall Clock Time, Total
Cycles (equivalent), Total Stall Cycles and either number of
floating point or integer instructions. The formula to calculate
the inefficiency for this purpose is:

Inefficiency = Floating Point Operations ∗
(Total Stall Cycles/Total Cycles)

This formula is calculated using PerfExplorer for each re-
gion being measured. The regions with the highest inefficiency
are the regions that the programmer and compiler should focus
on optimizing.

Collection of in-depth performance information for the
inefficient regions in profiling mode: In this run we do not turn
on all the instrumentation, but only instrument specific code

regions or procedures of interest, collecting more fine-grain
information. This includes instrumenting loops, branches,
calls, and possibly individual statements. During this run we
collect hardware counters to perform the processor bottleneck
analysis. The general formula we have adopted for this purpose
is the following based on Jarp [10]:

Total Stall Cycles = L1D Cache Misses +
Branch Misprediction + Instruction Misses +
StackEngine stalls + Floating Point Stalls +

Pipeline Inter Register Dependencies +
Processor Frontend F lushes

We primarily collect performance data for stall cycles from the
L1D Cache Misses and Floating Point Stalls (on the Itanium,
the floating-point registers are fed directly from level 2 cache).
If 90% of the stalls are due to these two causes, we ignore
other sources of stalls in the formula. If that is not the case,
we will have to perform additional runs to calculate the other
components of the formula. The 90% is a general guideline
based on behavior seen in different applications.

Memory Analysis Metrics: In the same way as the second
run, we use hardware counters to perform the memory bottle-
neck analysis based on the following formula:

Memory Stalls = (L2 data references L2 all −
L2 misses) ∗ L2 Memory Latency + (L2 misses−
L3 missed) ∗ L3 Memory Latency + (L3 misses−

Number of remote memory accesses) ∗
Local Memory Latency +

(Number of remote memory accesses) ∗
Remote memory access latency + TLB misses ∗

TLB miss penalty

Remote Memory Accesses Ratio =
Number of remote memory accesses/L3 misses

The coefficients in this formula are the different latencies
(in cycles) for the different levels of memory for the Itanium 2
processor (Madison), and the interconnection latencies of the
SGI NumaLINK 4 for local and remote memory accesses. The
value for remote memory latency accesses is an estimation of
the worst-case scenario for a pair of nodes with the maximum
number of hops and is system dependent.

In this case study we wanted to understand why the
OpenMP implementation of this application does not scale
when compared to the MPI implementation in the SGI Altix.
The OpenMP version lagged by a factor of 11.16 behind its
MPI counterpart for the case of 90rib and 3.48 for the 45rib
case. The unoptimized OpenMP version of the application
does not scale at all as seen in Figure 5(b).

We constructed PerfExplorer scripts to derive the metrics,
and created rules to examine the results. For the first metric,
we constructed a script which loaded the data, derived the
inefficiency metric, and then a rule searched for events with
high inefficiency. We used the script and accompanying rules
to examine a 16-thread run of the OpenMP implementation
on the 90rib problem, six procedures with poor scaling were

identified with a higher than average stall-per-cycle rate. We
constructed a second script which derived the total stall metric.
The rule for the second metric was to look for events which
had 90% or more of their stalls caused by floating-point stalls
or memory stalls. The same six events, plus two more, were
identified as having a high percentage of stalls from those two
sources. We constructed a third script to examine the causes
of the memory stalls. The script was primarily concerned with
the numbers of L3 cache misses and the ratio of local memory
references to remote memory references.

The performance slowdown is mostly caused by a data lo-
cality difference between the two versions. This was indicated
by higher number of L3 cache misses and latencies in the
OpenMP version, as opposed to the MPI version. Figure 5(a)
shows that the main computation procedures bicgstab,
diff_coeff, matxvec, pc, pc_jac_glb (among others)
do not scale. Data locality is important for achieving good
performance in the SGI Altix. SGI Altix provides the default
first-touch policy for placing data, in which a page of memory
is allocated/moved to the local memory of the first process to
access the page. The use of a default first-touch policy has
worked very well on a single threaded or MPI processes code
on many NUMA platforms, but may lead to poor performance
with OpenMP. In MPI all the memory accesses are to local
memory by default. OpenMP has the flexibility to use the
first-touch policy to place data in the different nodes since the
data are not explicitly mapped to processors as with MPI. In
addition, OpenMP has a privatization feature where data can
be defined as local to each thread.

The final major source of performance degradation is
caused by the procedure exchange_var as seen in Figure
5(a). This procedure is responsible for driving the exchange
of data in the ghost cells. Because one of its subroutines
(mpi_send_recv_ko) is sequential, it limits the scalability
of the application. In the old implementation of the boundary
update procedure, which was primarily written for the MPI
paradigm, the on-processor copies were done sequentially
since most of the work was distributed over MPI processes.
However, this became a major bottleneck in the OpenMP
paradigm. Four of the events from the previous script were
identified as having a lower ratio of local to remote memory
references than the application on average. One of these
events, exchange_var__, represented 31% of the runtime,
and was scaling very poorly, which confirms its sequential
nature and its local data.

Since PerfExplorer was able to determine that the main
problem in the computational procedures were L3 misses
and remote memory accesses (when compared to MPI) we
discovered that the application was initializing most of its data
sequentially, resulting in data being placed on one node. We
fixed all the initializations by parallelizing the initialization
loops to make sure we place the data correctly across proces-
sors.

To remedy the exchange_var__ problem the on-
processor copies were parallelized by eliminating two inter-
mediate steps in the update procedure: that of filling the

(a) Speedup per event, unoptimized OpenMP. (b) Speedup of optimized and unoptimized OpenMP, and optimized MPI.

Fig. 5. GenIDLEST scaling behavior for 90rib problem.

intermediate send buffer with data to be copied and copying
this buffer into an intermediate receive buffer, which are
inherently serial operations. In the the optimized version, an
OpenMP do parallel loop is applied to the blocks residing on
the processor (8 for 45rib and 32 for 90rib) and direct copies
are initiated from the send buffer to the destination array.

After optimization, both the MPI and OpenMP baseline per-
formance improved, and the OpenMP implementation scaled
nearly as well as MPI, as seen in 5(b). The performance
difference between the MPI and OpenMP implementations
become minimal, in the range of 15% for 90rib and 16.8%
for 45rib which is a big improvement from the unoptimized
version. The lesson learned here is that we need to provide
feedback to the compiler to tell it that it should focus on
improving the L3 optimizations by targeting reduction of
the cycles predicted in the cache model. We must also feed
back information to the inter-procedural array region analyzer
to make sure that all the data are initialized and accessed
consistently across procedures to improve data locality via the
first-touch policy. The feedback presented to the user includes
suggestions for the exchange_var__ procedure.

C. Power Modeling with GenIDLEST

With rising energy costs for managing and running su-
percomputing systems, there is an increasing need for more
integrated tool infrastructures that support both performance
and power monitoring and analysis capabilities. In addition to
the robust performance centric automated analysis capabilities
of PerfExplorer shown thus far, we investigate how using a
similar methodology PerfExplorer may be applied for power
analysis.

In our study of modeling processor power consumption and
energy efficiency, we use PerfExplorer to compute a power
metric based on [23]. The power metric is based on hardware
performance counters and on the on-die components of the

processor (see Equation 1 and Equation 2). In Eq. 1, power
is computed for each component(Ci) of the processor. The
maximum power value is the published thermal design power
(TDP) for the processor. The power for each component is
weighted based on the access rates for each component. Eq. 2
computes the total power consumed by the processor and is
based on the sum of the power consumed by n components and
the idle power. For multiprocessor or multicore systems, the
total power across all processing elements can be modeled by
summing the total power computed in Eq. 2 for each processor
or core.

Power(Ci) = AccessRate(Ci)∗
ArchitecturalScaling(Ci) ∗MaxPower

(1)

TotalPower =
n∑

i=0

Power(Ci) + IdlePower (2)

We implemented PerfExplorer scripts to obtain power dis-
sipation and energy consumption estimates and analysis. We
used GenIDLEST running the 90rib dataset as a power/energy
case study. Different levels of standard optimizations for
the OpenUH compiler were applied ranging from O0 (all
optimizations are disabled) to O3 (applies the most aggressive
optimizations including loop nest optimizations). The appli-
cation was run in parallel with MPI on 16 processors on the
Altix 300.

The results from the case study show that power dissipation
generally increases with higher optimization levels while en-
ergy decreases as more aggressive compiler optimizations are
applied (see Table I). These results are consistent with previous
studies that examine the effects of compiler optimizations on
power and energy efficiency [22], [17]. Also consistent with
a previous research study [22], we find that the instruction
count is directly proportional to energy consumption and a

similar relationship exists between instructions per cycle (IPC)
and power dissipation. A higher instruction count translates to
more work for the CPU and so energy increases. Optimizations
such as common subexpression elimination and copy propa-
gation that decrease the number of instructions are generally
beneficial when compiling for energy efficiency. In the case of
compiling for power efficiency, optimizations that increase the
overlap in instruction execution while keeping the instruction
count fairly constant (and therefore increasing IPC) results
in higher power consumption. Examples of optimizations that
may increase power dissipation include software pipelining,
instruction scheduling, and vectorization.

Compilers apply different sets of standard optimizations at
each level. For a given study based on our power model,
results will differ dependent on the compiler. The results here
are specific for the OpenUH compiler or a compiler that
applies similar optimizations at each level. Table I shows
that at optimization O1, we get an increase in power, as
well as a decrease in energy. At O1, minimal optimizations
such as instruction scheduling and peephole optimizations
are applied to straight-line code. These optimizations will
expectedly have an effect on both power and energy. At O2,
the more aggressive optimizations significantly decrease the
total instruction count (e.g. dead store elimination and partial
redundancy elimination) and so we get a significant decrease
in energy consumption and a small drop in power dissipation.
At the most aggressive level of optimization (O3), loop nest
optimizations (such as vectorization and loop fusion/fission)
are enabled leading to increases in instruction execution over-
lap and therefore increases in power dissipation. Given the
results from this case study, PerfExplorer might be able to
direct either the compiler or programmer to optimize for low
power, low energy, or both using inference rules. The results
from Table I suggest that O0 should be enabled for low power,
O3 enabled for low energy, and O2 for both power and energy
efficiency for the OpenUH compiler. Compiling for low energy
can be important for embedded and scientific applications,
whereas compiling for low power has more significant long-
term effects in terms of system reliability and reduced cooling
and operational costs for large-scale servers.

Metric -O0 -O1 -O2 -O3
Time 1.0 0.338 0.071 0.049
Instructions Completed 1.0 0.471 0.059 0.056
Instructions Issued 1.0 0.472 0.063 0.061
Instructions Completed Per Cycle 1.0 1.397 0.857 1.209
Instructions Issued Per Cycle 1.0 1.400 0.909 1.316
Watts 1.0 1.025 1.001 1.029
Joules 1.0 0.346 0.071 0.050
FLOP/Joule 1.0 2.867 13.684 19.305

TABLE I
GENIDLEST RELATIVE DIFFERENCES FOR DIFFERENT OPTIMIZATION

SETTINGS, US ING 16 MPI PROCESSES ON A 90RIBLET PROBLEM.
OPTIMIZATION LEVEL O0 IS THE BASELINE.

IV. RELATED WORK

Feedback optimizations include a variety of techniques that
aim to improve the execution behavior of a program based on
information on its current or previous runtime behavior. Run-
time information, which may be specific to a given instance of
a program’s execution, helps the compiler direct its efforts to
frequently executed regions of code and make better judgments
on what set of optimizations can improve the code. There
is a large body of work, including our own, that focuses on
offline optimizations. Systems such as GEM, IMPACT, SUIF,
OpenUH, DCPI, FX!32 Morph, GCC, Alpha Compaq Compil-
ers, SGI compilers, PROMISE perform high-level and object-
level optimizations. Typical optimizations include feedback-
directed inlining, partial dead code elimination, instruction
scheduling, code reordering and loop optimizations. Several
sets of runtime information based on training sets of input
data may be used to characterize the typical runtime behavior
of the application. Other systems focus on online code reop-
timizations via software with the help of hardware. Dynamo,
Cursoe, IA32EL, PIN, reoptimize object code, ADAPT [26],
Tempo, DyC, and ’C all create specialized versions of the code
during runtime. Little work has been devoted to a dynamic
compilation system that works for OpenMP. Studies have
shown that is feasible to optimize codes with performance
information for new multicore architectures. stOMP [3] has
been proposed to target OpenMP. stOMP focuses on value
phasing, optimizing code in a parallel region based on the
current values of shared values. Recent work experimented
with different OpenMP scheduler configurations at the parallel
region and loop level in OpenMP codes [30]. Optimizing at the
loop level resulted in better performance, but led to very high
runtime overheads mostly from the decision algorithm applied
to selecting the OpenMP work scheduling algorithm for a loop.
None of these approaches use a combination of performance
analysis and modeling to provide feedback to the compiler.
Marathe [15] presented a tool for profile-guided automatic
page placement for ccNUMAs. The approach is low level,
compiler independent but dependent on input data provided to
the application.

The use of performance problem solving in automated
analysis depends on having rich tools for exploring the rela-
tionship between performance and computation behavior. The
FINESSE [16] tool demonstrates the use of overhead analysis
to explain experimental observations based on models of exe-
cution behavior. The benefit was prescriptive in that it provides
a basis for successive refinement in program development to
better performing solutions. FINESSE targetes shared-memory
optimization of a molecular dynamics application. KappaPi
(Knowledge-based Automatic Parallel Program Analyzer for
Performance Improvement) [11] are tools for detecting known
performance bottlenecks in PVM and MPI applications. The
tools determine causes by applying inference rules to the
analysis of trace files. The causes are then related back to
the source code and include recommendations to the user.

Our work on Poirot [14] considered general support for

automating performance diagnosis in parallel tools, and the
Hercule[12] tool showed how performance diagnosis can be
built on computational model-centric rules for finding symp-
toms of and explanations for common performance problems
in applications, such as load imbalance, insufficient paral-
lelization, and scheduling overhead. Since performance prob-
lems are diagnosed in the context of the application’s parallel
model, possible solutions for correcting the inefficiencies can
be proposed. In contrast to our current work, Hercule analyzes
event trace files, not profiles, and lacks support for analysis
scripting.

EXPERT[19] is an automatic event-trace analysis tool for
MPI and OpenMP applications. It searches the traces for
execution patterns indicating low performance and quanti-
fies them according to their severity. The patterns target
both problems resulting from inefficient communication and
synchronization as well as from low CPU and memory
performance. SCALASCA[6] parallelizes the EXPERT trace
analysis methods and provides the CUBE[28] graphical viewer
for highlighting performance problems in relation to threads
of execution and metrics. CUBE implements Performance
Algebra, a technique for performing difference, merge and
aggregation operations on parallel performance profile data. In
contrast to these tools, PerfExplorer provides support for trans-
lating performance problems and metrics into performance
knowledge and rules, and for integrating these performance
analytics capabilities into automated analysis environments.

Performance Assertions[25] have been developed to confirm
that the empirical performance data of an application or code
region meets or exceeds that of the expected performance. By
using the assertions, the programmer can relate expected per-
formance results to variables in the application, the execution
configuration (i.e. number of processors), and pre-evaluated
variables (i.e. peak FLOPS for this machine). This technique
allows users to encode their performance expectations for
regions of code, confirm these expectations with empirical
data, and even make runtime decisions about component
selection based on this data. The use of performance assertions
requires extensive annotation of source code, and relies on the
application developer’s experience and intuition in knowing
where to insert the assertions, and what kind of performance
result to expect.

Several strategies exist for reducing total power dissipated
and energy consumed by a microprocessor. Power and energy
saving techniques can be applied at the level of circuits,
architectures, system software, and at the application layer[24].
Power analysis and optimizations at the system software and
application layers have not been adequately explored, but some
progress has been made in recent times. Seng and Tullsen[17]
studied the effects of power and energy savings for both
standard compiler optimizations and individual optimizations
on the Pentium 4. Their experiments suggest that compil-
ing for the best performance is equated with high energy
savings. Valluri and John[22] performed a similar but more
in-depth study on the Alpha 21264 processor. They found
that optimizations that improve performance by reducing the

instruction count are optimized for low energy. They also
found that optimizations that improve performance by in-
creasing the amount of overlap in execution of instructions
increase average power dissipation in the processor. LUNA[5]
is a high level power analysis framework for multicore NoC
architectures. LUNA has been employed by the compiler to
generate power profiles in the network that were used to
generate directives which are stored at each router to direct
the operation of dynamic-voltage-scalable (DVS) links. The
COPPER project[1] applies dynamic compilation strategies for
dynamic power management. They introduce techniques for
compiler controlled dynamic register file reconfiguration and
profile-driven dynamic clock frequency and voltage scaling. At
the application layer, PowerPack[4] provides library routines
that allow users to embed ACPI calls in applications and
reduce the CPU’s processing speed via DVS. Very few tools
provide an automated framework that would enable the non-
expert to successfully apply these optimization techniques to
achieve low energy consumption and power dissipation rates
in their applications.

V. CONCLUSION

Automated performance analysis depends both on the pro-
cessing of multi-experiment performance data and on expert
knowledge to direct the processing, interpret the results, and
provide decision support. The research reported represents
our first attempt to integrate PerfExplorer’s capabilities for
capturing and automating performance analysis with tools for
performance-directed modeling and optimization. The flexible
programmatic support for analysis scripting and rule-based
knowledge engineering in PerfExplorer has proven successful
in the integration with the OpenUH compiler system and
now sets the stage for more sophisticated feedback-directed
compiler optimizations.

Our future work will explore several opportunities. The cost
model calculation for OpenUH can be modified to integrate
feedback from runtime performance to generate more accurate
cost models. Different optimization priorities may apply, such
as improving caching/memory strategies or utilizing processor
functional units more effectively. The parallel model should
be improved to feed in information to detect imbalances due
to different amounts of work per thread in parallel loops.
We also need to feed information with regard to sources
of overhead and their causes, such as time spent in atomic
operations, locking, and critical sections, and their correlation
to the distribution of work in parallel sections and number of
threads. In addition, there are strategies for variable privatiza-
tion and first touch policies to reduce the number of remote
memory references that can be better informed by automated
performance analysis.

We plan to extend our performance and power inference
rules with PerfExplorer and integrate the results with the
OpenUH compiler cost model, thus enabling users to target
optimizations based on both performance and power models.
Furthermore, we will also extend our models to consider
the impacts of architecture characteristics and application

metadata on compilation strategies for improved power and
energy efficiency.

ACKNOWLEDGMENT

University of Oregon research is sponsored by contracts DE-
FG02-07ER25826 and DE-FG02-05ER25680 from the MICS
program of the U.S. DOE, Office of Science and NSF grant
#CCF0444475. University of Houston research is sponsored
by the NSF grants #CCF-0444468 and #CCF-0702775. Re-
search at Argonne National Laboratory is supported through a
CISE-BPC supplement under NSF grant #0444345 and DOE
contract DE-AC02-06CH11357.

REFERENCES

[1] A. Azevedo, R. Cornea, I. Issenin, R. Gupta, N. Dutt, A. Nicolau,
and A. Veidenbaum, “Architectural and compiler strategies for dynamic
power management in the copper project,” in IWIA ’01: Proceedings
of the Innovative Architecture for Future Generation High-Performance
Processors and Systems (IWIA’01). Washington, DC, USA: IEEE
Computer Society, 2001, p. 25.

[2] V. Bui, O. Hernandez, B. Chapman, R. Kufrin, D. Tafti, and P. Gopalkr-
ishnan, “Towards an implementation of the openmp collector api,” in
PARCO, 2007.

[3] M. Burcea and M. Voss, “A runtime optimization system for OpenMP,”
in WOMPAT, 2003, pp. 42–53.

[4] K. W. Cameron, R. Ge, and X. Feng, “High-performance, power-aware
distributed computing for scientific applications,” Computer, vol. 38,
no. 11, pp. 40–47, 2005.

[5] N. Eisley, V. Soteriou, and L.-S. Peh, “High-level power analysis for
multi-core chips,” in CASES ’06: Proceedings of the 2006 international
conference on Compilers, architecture and synthesis for embedded
systems. New York, NY, USA: ACM, 2006, pp. 389–400.

[6] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr, “Scalable parallel
trace-based performance analysis,” in Proc. 13th European PVM/MPI
Users’ Group Meeting, ser. LNCS, vol. 4192. Bonn, Germany: Springer,
September 2006, pp. 303–312.

[7] O. Hernandez, H. Jin, and B. Chapman, “Compiler support for effi-
cient instrumentation,” in ParCo ’07: Proceedings of the International
Conference ParCo 2007. Julich, Germany: NIC-Directors, 2007, pp.
661–668.

[8] O. Hernandez, F. Song, B. Chapman, J. Dongarra, B. Mohr,
S. Moore, and F. Wolf, “Instrumentation and compiler optimizations
for mpi/openmp applications,” in International Workshop on OpenMP
(IWOMP 2006), 2006.

[9] K. A. Huck, A. D. Malony, S. Shende, and A. Morris, “Scalable,
automated performance analysis with tau and perfexplorer,” in Parallel
Computing (ParCo), Aachen, Germany, 2007.

[10] S. Jarp, “A methodology for using the itanium-2 performance counters
for bottleneck analysis,” HP Labs, Tech. Rep., August 2002.

[11] J. Jorba, T. Margalef, and E. Luque, “Performance analysis of parallel
applications with kappapi2,” Parallel Computing: Current & Future
Issues of High-End Computing, Proceedings of the International Con-
ference ParCo 2005, vol. 33, pp. 155–162, 2006.

[12] L. Li and A. D. Malony, “Knowledge engineering for automatic parallel
performance diagnosis,” Concurrrency and Computation: Practice and
Experience, 2006.

[13] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng,
“OpenUH: An optimizing, portable OpenMP compiler,” in 12th Work-
shop on Compilers for Parallel Computers, 2006.

[14] A. Malony and R. Helm, “A Theory and Architecture for Automating
Performance Diagnosis,” Future Generation Computer Systems, vol. 18,
no. 1, pp. 189–200, Sep. 2001, (Special issue on Performance Data-
mining in Parallel and Distributed Computing).

[15] J. Marathe and F. Mueller, “Hardware profile-guided automatic page
placement for ccnuma systems,” in PPoPP ’06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming. New York, NY, USA: ACM, 2006, pp. 90–
99.

[16] G. D. Riley, J. M. Bull, and J. R. Gurd, “Performance improvement
through overhead analysis: A case study in molecular dynamics,” in
International Conference on Supercomputing, 1997, pp. 36–43.

[17] J. S. Seng and D. M. Tullsen, “The effect of compiler optimizations
on pentium 4 power consumption,” in INTERACT ’03: Proceedings of
the Seventh Workshop on Interaction between Compilers and Computer
Architectures. Washington, DC, USA: IEEE Computer Society, 2003,
p. 51.

[18] S. Shende and A. D. Malony, “The TAU parallel performance
system,” The International Journal of High Performance Computing
Applications, vol. 20, no. 2, pp. 287–331, Summer 2006. [Online].
Available: http://www.cs.uoregon.edu/research/tau

[19] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore, “An
algebra for cross-experiment performance analysis,” in Proceedings
of 2004 International Conference on Parallel Processing (ICPP’04),
Montreal, Quebec, Canada, 2004, pp. 63–72. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ICPP.2004.1327905

[20] D. K. Tafti, “Genidlest - a scalable parallel computational tool for
simulating complex turbulent flows,” in Proceedings of the ASME Fluids
Engineering Division, November 2001.

[21] J. Thompson, D. Higgins, and T. Gibson, “CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice,”
Nucl. Acids Res., vol. 22, pp. 4673–4680, 1994.

[22] M. Valluri and L. John, “Is compiling for performance == compiling for
power,” 2001. [Online]. Available: citeseer.ist.psu.edu/valluri01is.html

[23] V.Bui, B. Norris, L. McInnes, K. Huck, O. Hernandez, L. Li, and
B. Chapman, “A component infrastructure for performance and power
modeling of parallel scientific applications,” in Component-Based High
Performance Computing, 2008.

[24] V. Venkatachalam and M. Franz, “Power reduction techniques for
microprocessor systems,” ACM Comput. Surv., vol. 37, no. 3, pp. 195–
237, 2005.

[25] J. S. Vetter and P. H. Worley, “Asserting performance expectations,”
in Supercomputing ’02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2002, pp. 1–13. [Online]. Avail-
able: http://portal.acm.org/ft gateway.cfm?id=762809&type=pdf&coll=
ACM&dl=ACM&CFID=52735087&CFTOKEN=45432917

[26] M. J. Voss and R. Eigemann, “High-level adaptive program optimization
with ADAPT,” ACM SIGPLAN Notices, vol. 36, no. 7, pp. 93–102, 2001.

[27] G. Wang and D. K. Tafti, “Uniprocessor performance enhancement with
additive schwarz preconditioners on origin 2000,” Adv. Eng. Softw.,
vol. 29, no. 3-6, pp. 425–431, 1998.

[28] F. Wolf and B. Mohr, “Automatic performance analysis of SMP cluster
applications,” Research Centre Julich, Tech. Rep. 05, 2001.

[29] M. E. Wolf, D. E. Maydan, and D.-K. Chen, “Combining loop transfor-
mations considering caches and scheduling,” in MICRO 29: Proceedings
of the 29th annual ACM/IEEE international symposium on Microarchi-
tecture. Washington, DC, USA: IEEE Computer Society, 1996, pp.
274–286.

[30] Y. Zhang and M. Voss, “Runtime empirical selection of loop schedulers
on hyperthreaded smps.” in IPDPS, 2005.

[31] A. Zomaya, Ed., Parallel Computing for Bioinformatics and Compu-
tational Biology: Models, Enabling Technologies, and Case Studies,
1st ed., ser. Wiley Series on Parallel and Distributed Computing. Wiley
Interscience, 2006.

